Hedging Options On Variance

Hans Buehler Deutsche Bank GME Quantitative Products Analytics, London

hans.buehler@db.com http://www.dbquant.com

649.71 33.35 A

Global Derivatives & Risk Management Paris, May 22nd, 2007

Hedging Options On Variance

- Measuring Hedging Performance
 - Formuling the problem
- Model Candidates
- Results

Hedging Options On Variance

Fix some notation

Realised variance is defined over business days $T_1 = t_0 < \cdots < t_n = T_2$ as

$$RV(T_1, T_2) \coloneqq \sum_{i=1}^n \left(\log \frac{S_{t_i}}{S_{t_{i-1}}} \right)^2$$

- The scaled quantity $1/n RV(T_1, T_2)$ is an unbiased estimator for the quadratic variation of logS in $[T_1, T_2]$ ie

$$RV(T_1, T_2) \approx E \left[QV(T_1, T_2) \coloneqq \left\{ \log S \right\}_{T_2} - \left\{ \log S \right\}_{T_1} \right]$$

– We denote spot started variance swaps as V:

$$V_t(T) := \mathbf{E} \big[\mathbf{R} V(t,T) \,|\, F_t \big]$$

Hedging Options on Variance

Measuring hedging performance

Measuring hedging performance

The eternal model question

Which Model is the Best?

 \rightarrow The one which gives me "the best" hedging performance

Measuring hedging performance – formulating the problem

- What do we mean by *hedging performance*?
 - 1. Any bug-free and well-understood model will allow to do full P&L explanation:
 - Some degree of Taylor expansion of the model pricer in terms of all inputs will explain the changes of prices.
 - However, that does not tell us how to actually hedge ourselves.
 - 2. Our approach here:

Hedge options on realized variance using "variance swap delta".

- Calibrate our models daily using historic data.
- Price, and hedge our variance swap and stock delta.
- Compute daily hedging error.

Measuring hedging performance – some theory

In standard stochastic-volatility models, we have

$$\frac{dS_{t}}{S_{t}} = \mu_{t}dt + \Sigma(S_{t}, v_{t})dW_{t}$$

$$\frac{dV_{t}}{dv_{t}} = a(v_{t})dt + b(v_{t})dB_{t}$$

No jumps

For "any" path-dependent payoff H with maturity T denote by P the price

$$P_t^T(s;v) \coloneqq \mathbf{E} \left[\mathbf{H} \mid S_t = s; v_t = v; \mathbf{F}_{t-} \right]$$

– Here, F_t is the predictable σ -algebra. Example:

$$P_t^T(s;v) \coloneqq \mathbf{E}\left[\left(rv + RV(t,T) - K\right)^+ \mid S_t = s; v_t = v; RV(0,t) = rv\right]$$

Deutsche Bank

Measuring hedging performance – some theory

Under some weak conditions (e.g. Buehler 2006) we can write

$$dP_t^T(S_t; v_t) = \delta_t dS_t + \omega_v^T dV_t(T) + drift$$

Define the (stock) delta

$$\Delta_t \coloneqq \partial_S P_t^T(S_t; v_t)$$

and "VarSwapDelta"

$$\Omega_t^T \coloneqq \frac{\partial_v P_t^T(S_t; v_t)}{\partial_v V_t(T)}$$

Measuring hedging performance – some theory

Note that given our discussion about realized variance and quadratic variation, the variance swap itself has some small delta *∆^V* in the model (this is <u>not</u> the standard 2/S(t) delta!).

We therefore have

$$dP_t^T(S_t; v_t) = \underbrace{\left(\Delta_t - \Omega_t^T \Delta_t^V\right)}_{\widetilde{\Delta}_t} dS_t + \Omega_v^T dV_t(T)$$

■ Then, define the *instantaneous hedging error* as

$$\varepsilon_t^T := \frac{\widetilde{\Delta}_t dS_t + \Omega_t^T dV_t(T) - dP_t^T(S_t; v_t)}{P_t^T(S_t; v_t)}$$

Measuring hedging performance – formulating the problem

The instantaneous hedging error is the relative short-fall of our hedged position with respect to the value of the option.

$$\varepsilon_t^T := \frac{\widetilde{\Delta}_t dS_t + \Omega_t^T dV_t(T) - dP_t^T(S_t; v_t)}{P_t^T(S_t; v_t)}$$

- Note that we actually going to re-calibrate the model between t and t+1, hence interpret the above accordingly.
- The definition makes only sense for payoffs H>0 (\rightarrow separate swap legs).

Measuring hedging performance – formulating the problem

• We want a model such that ε is "small"

$$\varepsilon_t^T := \frac{\widetilde{\Delta}_t dS_t + \Omega_t^T dV_t(T) - dP_t^T(S_t; v_t)}{P_t^T(S_t; v_t)}$$

- What does this mean?
- The instantaneous error is a random variable, we observe only one path.
- The primary aim is to reduce the variance of the relative daily changes of the position, i.e. "how much uncertainty" there is.

Measuring hedging performance – formulating the problem

- Assume we want to know "the error" for 3m ATM calls on RV.
- 1. Fixed maturity view:
 - Slice the available data in consecutive 3m regions
 - Compute OOV hedges and payoffs for all relevant strikes.
 - Compute for each the average daily hedging error and its standard deviation.

$$e \coloneqq \frac{1}{n} \sum_{k} \varepsilon_{t_{k}}^{T_{i}} \qquad \sigma \coloneqq \sqrt{\frac{1}{n(n-1)}} \sum_{k} \left(\varepsilon_{t_{k}}^{T_{i}} - e\right)^{2}$$

- Problem:
 - Data very uninteresting when option moves out-of- or in-the-money (in both cases the hedges obviously work very well).
 - Only very limited amount of data does not allow many samples of the above.

Measuring hedging performance – formulating the problem

- 2. Floating maturity view:
 - Daily, compute the daily hedging error for calls which started yesterday.
 - This allows to concentrate on the region with the highest VarSwapGamma.
 - Much more relevant data can be obtained this way.

$$e \coloneqq \frac{1}{n} \sum_{k} \varepsilon_{t_{k}}^{t_{k}+3m} \qquad \sigma \coloneqq \sqrt{\frac{1}{n(n-1)}} \sum_{k} \left(\varepsilon_{t_{k}}^{t_{k}+3m} - e\right)^{2}$$

We then compute the mean/stddev for various maturities to get an idea where the hedging performance is most critical.

Options on Realized Variance Measuring hedging performance - calibration

- All the models we use will have some "VolOfVol" parameter.
 - This parameter will be calibrated every day and used to price the option
 - Use ATM European option on the equity to extract VolOfVol as a measure of distance between VarianceSwap strike and Implied ATM Volatility. (cf. Buehler 2006)
 - Correlation gets fixed at -70%
 - With the above, we can also calibrate numerically expensive models.

Measuring hedging performance - summary

- For each model
 - We perform daily calibration of VolOfVol from equity ATM options.
 - We use VarSwapDelta and stock delta from the model to hedge the target option.
 - We look at daily relative hedging errors for the "floating" option (Mean and standard deviation)
- What we will not do
 - Impact of jumps
 - Transaction costs & the term structure of OOVs

Measuring hedging performance - dry run

First a dry run:

Asian 1m ATM Call on STOXX50E *on the equity*

$$\mathbf{H} \coloneqq \left(\frac{1}{n} \sum_{i=1}^{1m} S_{t_i} - F_{1m}\right)^+$$

- Model: Black-Scholes with Moment-matching
- Hedging instrument: Zero-strike Asian Call STOXX50E
- Vega-Hedging using the ATM European option

Options on Realized Variance Measuring hedging performance - dry run

Hedging performance: Asian Call 1m ATM STOXX50E $\frac{dP}{P}$ 150.000% 100.000% Change in portfolio / Option price 50.000% 0.000% -50.000% -100.000% -Plain option -150.000% 6-Aug-07 14-Dec-05 28-Apr-07 24-Mar-06 2-Jul-06 10-Oct-06 18-Jan-07

Deutsche Bank

Options on Realized Variance Measuring hedging performance - dry run

Measuring hedging performance - dry run

Hedging performance: Asian Call 1m ATM STOXX50E

Hedging Options on Variance

Model candidates

Candidate models: Black Scholes RV

Black-Scholes for realized variance

$$QV(T) = V_0 \cdot \exp\left\{\sigma\sqrt{T} \cdot Y - \frac{1}{2}\sigma^2 T\right\}$$

VolOfVol

for *Y* normal.

- Use usual European pricer to evaluate option.
- Calibration:
 - 1. Estimate σ from historic data ~ 180% for 1m
 - 2. For an independent *Z*, let

$$S_T = F_T \exp\left\{\sqrt{QV(T)} \cdot Z - \frac{1}{2}QV(T)\right\}$$

and obtain VolOfVol from ATM European option on the equity.

Candidate models: Black Scholes RV

- What is good about it
 - Simple & easy & fast
 - Can use Black-Scholes pricer

More properties

- No skew (if correlation is not zero, *S* not a martingale)
- No (similar) "instantaneous" equivalent which is consistent across maturities.

Candidate models: Fitted Heston

- Fitted Heston (cf. Buehler 2006, Bermudez et al 2006)
 - Use Heston dynamics and retro-fit the observed variance swap curve V(T) to it. (just as Vasicek's model is fitted to the bond market)

$$\frac{dX_{t}}{X_{t}} = \sqrt{v_{t}} dB_{t}$$

$$v_{t} \coloneqq \frac{\widetilde{v}_{t}}{\mathrm{E}\widetilde{v}_{t}} \partial_{T} |_{T=t} \left(V_{0}(T) \right) \quad \text{VolOfVol}$$

$$d\widetilde{v}_{t} = k(\widetilde{v}_{0} - \widetilde{v}_{t}) dt + \sigma \sqrt{\widetilde{v}_{t}} dW_{t}$$

- Then we get

$$\mathbf{E}[\mathbf{R}\mathbf{V}(0,\mathbf{T})] = \int_0^T \mathbf{E}[v_t] dt = V_0(T)$$

Candidate models: Fitted Heston

- What is good about it
 - European option pricing very efficient, so VolOfVol calibration very fast.
 - "Proper model" with consistent dynamics across maturities
 - Akin to BS for equity, a term-structure of VolOfVol used here, though.

More properties

- Reversion Speed κ controls VolOfVol term-structure
- We can add jumps to generate upside smile observed in OOV market.
- Variance swap dynamics also affine.

Candidate models: Fitted Log-Normal

- Fitted Log-Normal (cf. Dupire 2004, Bergomi 2005)
 - Use log-normal variance and retro-fit the variance swaps.

Candidate models: Fitted Log-Normal

- What is good about it
 - Very intuitive model ("canonical" approach)
 - Again "proper model" with consistent dynamics across maturities
 - Akin to BS for equity, a term-structure of VolOfVol used here, though.

More properties

- No analytic European option pricer (but fairly efficient MC possible)
- Reversion Speed κ controls VolOfVol term-structure
- We can add jumps to generate upside smile observed in OOV market.
- If V(T) is flat, variance swaps are log-normal.

Hedging Options on Variance In Action

Options on Realized Variance In Action

We start with a 1m ATM realized variance call

LogNormal and Heston Reversion Speed 5

Options on Realized Variance Measuring hedging performance

Changes of Model VolOfVol parameter due to calibration

Options on Realized Variance Measuring hedging performance

Hedging performance: OOV 1m Call, BS calibrated

Measuring hedging performance

Hedging performance: OOV 1m Call, BS @ 200

Options on Realized Variance Measuring hedging performance

Hedging performance: OOV 1m Call, BS @ 500

Measuring hedging performance

Hedging performance: OOV 1m Call, LN RevSpeed 5

Options on Realized Variance Measuring hedging performance

Hedging performance: OOV 1m Call, Heston RevSpeed 5

In Action - summary

1m ATM realized variance call

	Unhedged	VS Delta	VS & VolOfVol	
BS	0.260%	-1.375%	-0.766%	
LogNormal	-4.094%	2.495%	-0.223%	(Average)
Heston	-4.372%	2.745%	2.509%	(Average)
	Unhedged	VS Delta	VS & VolOfVol	
BS	28%	16%	22%	(StdDev)
LogNormal	40%	6%	9%	
Heston	42%	6%	6%	

Results comparable to BS Asian on the equity (43%/13%/7%)

649.71 33.35 A

Options on Realized Variance In Action

Now 3m ATM realized variance call

LogNormal and Heston Reversion Speed 2

Options on Realized Variance Measuring hedging performance

Changes of Model VolOfVol parameter due to calibration (3m)

Options on Realized Variance Measuring hedging performance

Hedging performance: OOV 3m Call, BS calibrated

Measuring hedging performance

150.000% 100.000% Change in portfolio / Option price 50.000% 0.000% -50.000% -Nothing -100.000% VS/S Unhedge(VS Delta VS & Vol(VV/VS/S -1.570% 0.888% -0.172% Average StdDev 23% 4% 6% -150.000% 6-Aug-07 14-Dec-05 10-Oct-06 28-Apr-07 24-Mar-06 2-Jul-06 18-Jan-07 **Deutsche Bank**

Hedging performance: OOV 3m Call, LN RevSpeed 2

Options on Realized Variance Measuring hedging performance

Hedging performance: OOV 3m Call, Heston RevSpeed 2

Options on Realized Variance In Action

■ 3m ATM realized variance call

Heston

	Unhedged	VS Delta	VS & VolOfVol
BS	0.263%	-0.948%	-0.880%
LogNormal	-1.570%	0.888%	-0.172%
Heston	-2.115%	1.489%	1.405%
	Unhedged	VS Delta	VS & VolOfVol
BS	16%	9%	10%
LogNormal	23%	4%	6%

3%

23%

3%

649/1 33.35 A 80/98 2.93 A

Options on Realized Variance In Action

- Comments
 - The two fitted models do better than BS
 - Heston and LogNormal produce *very* similar results; cf. Buehler 2006 \rightarrow Heston is *much* faster, so we use this model.
- Questions:
 - Straddles ?
 - Impact of reversion speed
 - What happens ITM/OTM and what happens for longer maturities

Questions – Straddles

Hedging performance: OOV 1m Straddle

Questions- Impact of reversion speed

15.000% 10.000% 5.000% 0.000% -5.000% Unhedge(VS Delta VS & Vol(Avg RS 0. 1.65% -2.37% 1.74% -10.000% 1.17% 0.98% Avg RS 5 -1.81% RS 5 VarSwap Hedge StdDev R 22.91% 3.31% 3.59% StdDev R 23.01% 3.38% 2.91% -15.000% 28-Apr-07 06-Aug-07 14-Dec-05 24-Mar-06 02-Jul-06 10-Oct-06 18-Jan-07

Hedging 3m ATM calls with Heston, RevSpeeds 0.001 and 5

Deutsche Bank

Questions- Impact of reversion speed

Average historic implied Heston VolOfVol for various reversion speeds

In Action – ITM/OTM and longer maturities

Hedging errors for various instruments

Options on Realized Variance In Action

Summary

- We have addressed the question "best model" by investigating the reduction of variance achieved by executing a VarSwapDelta-hedge and an additional VolOfVol-hedge.
- Three models have been tested
 - BS-type model bad performance for short maturities
 - Fitted Heston reduction of around 80% of variance for calls realistic
 - Fitted Log-Normal very similar to Heston
- Fitted Heston
 - Reversion Speed unimportant when a single maturity is concerned
 - Semi-analytic European option prices

Thank you very much for your attention. hans.buehler@db.com

Bibliography

- Barndorff-Nielsen, Graversen, Jacod, Podolskij, Shephard: "A Central Limit Theorem for Realised Power and Bipower Variations of Continuous Semimartingales", WP 2004 (from their website)
- Bermudez, Buehler, Ferraris, Jordinson, Lamnouar, Overhaus: Equity Hybrid derivatives, Wiley 2006
- Bergomi: "Smile Dynamics II", Risk September 2005
- Buehler: "Consistent Variance Curve Models", Finance and Stochastics, 2006
- Buehler: "Volatility Markets: Consistent Modelling, Hedging and Practical Implementation", PhD thesis, http://www.math.tu-berlin.de/~buehler/
- Carr, Lee: "Robust Replication of Volatility Derivatives" 2004 (from Peter Carr's website)
- Dupire: "Arbitrage Pricing with Stochastic Volatility", Derivatives Pricing, p.197-215, Risk 2004
- Heston: "A closed-form solution for options with stochastic volatility with applications to bond and currency options", Review of Financial Studies, 1993
- Neuberger: "Volatility Trading", London Business School WP (1999)

