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Hedging Options On Variance 
Fix some notation

Realised variance is defined over business days T1=t0<…<tn=T2 as

– The scaled quantity 1/n RV(T1,T2) is an unbiased estimator for the quadratic 
variation of logS in [T1,T2] ie

– We denote spot started variance swaps as V:
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Hedging Options on Variance
Measuring hedging performance
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Options on Realized Variance
Measuring hedging performance

The eternal model question

Which Model is the Best ?

→ The one which gives me „the best“ hedging performance



10 Reference (apr02)

Options on Realized Variance
Measuring hedging performance – formulating the problem

What do we mean by hedging performance?

1. Any bug-free and well-understood model will allow to do full P&L 
explanation:

– Some degree of Taylor expansion of the model pricer in terms of all inputs will 
explain the changes of prices.

– However, that does not tell us how to actually hedge ourselves.

2. Our approach here:
Hedge options on realized variance using „variance swap delta“.

– Calibrate our models daily using historic data.

– Price, and hedge our variance swap and stock delta.

– Compute daily hedging error.
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Options on Realized Variance
Measuring hedging performance – some theory

In standard stochastic-volatility models, we have

For “any” path-dependent payoff H with maturity T denote by P the 
price 

– Here, Ft is the predictable σ-algebra. Example:
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Options on Realized Variance
Measuring hedging performance – some theory

Under some weak conditions (e.g. Buehler 2006) we can write 

Define the (stock) delta

and “VarSwapDelta”
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Options on Realized Variance
Measuring hedging performance – some theory

Note that given our discussion about realized variance and quadratic 
variation, the variance swap itself has some small delta ΔV in the model
(this is not the standard 2/S(t) delta!). 

We therefore have

Then, define the instantaneous hedging error as
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Options on Realized Variance
Measuring hedging performance – formulating the problem

The instantaneous hedging error is the relative short-fall of our hedged 
position with respect to the value of the option. 

– Note that we actually going to re-calibrate the model between t and t+1, hence 
interpret the above accordingly.

– The definition makes only sense for payoffs H>0 (→ separate swap legs).
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Options on Realized Variance
Measuring hedging performance – formulating the problem

We want a model such that ε is “small”

– What does this mean? 

– The instantaneous error is a random variable, we observe only one path.

The primary aim is to reduce the variance of the relative daily changes of 
the position, i.e. “how much uncertainty” there is.

);(
);()(~

tt
T

t

tt
T

tt
T
tttT

t vSP
vSdPTdVdS −Ω+Δ

:=ε



16 Reference (apr02)

Options on Realized Variance
Measuring hedging performance – formulating the problem

Assume we want to know “the error” for 3m ATM calls on RV.

1. Fixed maturity view:
– Slice the available data in consecutive 3m regions

– Compute OOV hedges and payoffs for all relevant strikes.

– Compute for each the average daily hedging error and its standard deviation.

– Problem:
- Data very uninteresting when option moves out-of- or in-the-money (in both cases the 

hedges obviously work very well).

- Only very limited amount of data does not allow many samples of the above.
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Options on Realized Variance
Measuring hedging performance – formulating the problem

2. Floating maturity view:

– Daily, compute the daily hedging error for calls which started yesterday.

– This allows to concentrate on the region with the highest VarSwapGamma.

– Much more relevant data can be obtained this way.

We then compute the mean/stddev for various maturities to get an idea 
where the hedging performance is most critical.
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All the models we use will have some “VolOfVol” parameter.
– This parameter will be calibrated every day and used to price the option

- Use ATM European option on the equity to extract VolOfVol as a measure of distance 
between VarianceSwap strike and Implied ATM Volatility.
(cf. Buehler 2006)

– Correlation gets fixed at -70%

– With the above, we can also calibrate numerically expensive models.

Options on Realized Variance
Measuring hedging performance - calibration
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Options on Realized Variance
Measuring hedging performance - summary

For each model

– We perform daily calibration of VolOfVol from equity ATM options.

– We use VarSwapDelta and stock delta from the model to hedge the target option.

– We look at daily relative hedging errors for the “floating” option
(Mean and standard deviation)

What we will not do

– Impact of jumps

– Transaction costs & the term structure of OOVs
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Options on Realized Variance
Measuring hedging performance - dry run

First a dry run:

Asian 1m ATM Call on STOXX50E on the equity

– Model: Black-Scholes with Moment-matching

– Hedging instrument: Zero-strike Asian Call STOXX50E

– Vega-Hedging using the ATM European option
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Options on Realized Variance
Measuring hedging performance - dry run

Hedging performance: Asian Call 1m ATM STOXX50E
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Options on Realized Variance
Measuring hedging performance - dry run

Hedging performance: Asian Call 1m ATM STOXX50E
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Options on Realized Variance
Measuring hedging performance - dry run

Hedging performance: Asian Call 1m ATM STOXX50E
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Hedging Options on Variance
Model candidates



25 Reference (apr02)

Options on Realized Variance
Candidate models: Black Scholes RV

Black-Scholes for realized variance

for Y normal.

Use usual European pricer to evaluate option.

Calibration:

1. Estimate σ from historic data ~ 180% for 1m

2. For an independent Z, let 

and obtain VolOfVol from ATM European option on the equity.
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Options on Realized Variance
Candidate models: Black Scholes RV

What is good about it

– Simple & easy & fast

– Can use Black-Scholes pricer

More properties
– No skew (if correlation is not zero, S not a martingale)

– No (similar) “instantaneous” equivalent which is consistent across maturities.
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Options on Realized Variance
Candidate models: Fitted Heston

Fitted Heston (cf. Buehler 2006, Bermudez et al 2006)
– Use Heston dynamics and retro-fit the observed variance swap curve V(T) to it.

(just as Vasicek’s model is fitted to the bond market)

– Then we get
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Options on Realized Variance
Candidate models: Fitted Heston

What is good about it

– European option pricing very efficient, so VolOfVol calibration very fast.

– “Proper model” with consistent dynamics across maturities
- Akin to BS for equity, a term-structure of VolOfVol used here, though.

More properties

– Reversion Speed κ controls VolOfVol term-structure

– We can add jumps to generate upside smile observed in OOV market.

– Variance swap dynamics also affine.
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Options on Realized Variance
Candidate models: Fitted Log-Normal

Fitted Log-Normal (cf. Dupire 2004, Bergomi 2005)

– Use log-normal variance and retro-fit the variance swaps.

( )
ttt

tTTu

u

t

tt
t

t

dWdtuukdu

TV
e

ev

dBv
X

dX

t

t

σ+−=

∂=

=

=

)(

)(|
E

:

0

0

VolOfVol



30 Reference (apr02)

Options on Realized Variance
Candidate models: Fitted Log-Normal

What is good about it

– Very intuitive model (“canonical” approach)

– Again - “proper model” with consistent dynamics across maturities
- Akin to BS for equity, a term-structure of VolOfVol used here, though.

More properties
– No analytic European option pricer (but fairly efficient MC possible)

– Reversion Speed κ controls VolOfVol term-structure

– We can add jumps to generate upside smile observed in OOV market.

– If V(T) is flat, variance swaps are log-normal.
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Hedging Options on Variance
In Action
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Options on Realized Variance
In Action

We start with a 1m ATM realized variance call

– LogNormal and Heston Reversion Speed 5
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Options on Realized Variance
Measuring hedging performance

Changes of Model VolOfVol parameter due to calibration
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Options on Realized Variance
Measuring hedging performance

Hedging performance: OOV 1m Call, BS calibrated
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Options on Realized Variance
Measuring hedging performance

Hedging performance: OOV 1m Call, BS @ 200
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Options on Realized Variance
Measuring hedging performance

Hedging performance: OOV 1m Call, BS @ 500
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Options on Realized Variance
Measuring hedging performance

Hedging performance: OOV 1m Call, LN RevSpeed 5
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Options on Realized Variance
Measuring hedging performance

Hedging performance: OOV 1m Call, Heston RevSpeed 5
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Options on Realized Variance
In Action - summary

1m ATM realized variance call

Results comparable to BS Asian on the equity (43%/13%/7%)

6%6%42%Heston

9%6%40%LogNormal

22%16%28%BS

VS & VolOfVolVS DeltaUnhedged

2.509%2.745%-4.372%Heston

-0.223%2.495%-4.094%LogNormal

-0.766%-1.375%0.260%BS

VS & VolOfVolVS DeltaUnhedged

(Average)

(StdDev)
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Options on Realized Variance
In Action

Now 3m ATM realized variance call

– LogNormal and Heston Reversion Speed 2 
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Options on Realized Variance
Measuring hedging performance

Changes of Model VolOfVol parameter due to calibration (3m)
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Options on Realized Variance
Measuring hedging performance

Hedging performance: OOV 3m Call, BS calibrated
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Options on Realized Variance
Measuring hedging performance

Hedging performance: OOV 3m Call, LN RevSpeed 2
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Options on Realized Variance
Measuring hedging performance

Hedging performance: OOV 3m Call, Heston RevSpeed 2
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Options on Realized Variance
In Action

3m ATM realized variance call

3%3%23%Heston

6%4%23%LogNormal

10%9%16%BS

VS & VolOfVolVS DeltaUnhedged

1.405%1.489%-2.115%Heston

-0.172%0.888%-1.570%LogNormal

-0.880%-0.948%0.263%BS

VS & VolOfVolVS DeltaUnhedged
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Options on Realized Variance
In Action

Comments

– The two fitted models do better than BS

– Heston and LogNormal produce very similar results; cf. Buehler 2006
→ Heston is much faster, so we use this model.

Questions:
– Straddles ?

– Impact of reversion speed

– What happens ITM/OTM and what happens for longer maturities
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Options on Realized Variance
Questions – Straddles

Hedging performance: OOV 1m Straddle
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Options on Realized Variance
Questions– Impact of reversion speed

Hedging 3m ATM calls with Heston, RevSpeeds 0.001 and 5
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Options on Realized Variance
Questions– Impact of reversion speed
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Options on Realized Variance
In Action – ITM/OTM and longer maturities

Hedging errors for various instruments
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Options on Realized Variance
In Action

Summary

– We have addressed the question “best model” by investigating the reduction of 
variance achieved by executing a VarSwapDelta-hedge and an additional 
VolOfVol-hedge.

– Three models have been tested
- BS-type model bad performance for short maturities

- Fitted Heston reduction of around 80% of variance for calls realistic

- Fitted Log-Normal very similar to Heston

– Fitted Heston
- Reversion Speed unimportant when a single maturity is concerned

- Semi-analytic European option prices
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Thank you very much for your attention.
hans.buehler@db.com
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