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1 Heston

Among the classic stochastic volatility models [ref], Heston’s model is probably
the most well known. The model has been published in 1996 by S. Heston in
his seminal article whose title readily reveals much of its popularity: “A closed-
form solution for options with stochastic volatility with applications to bond
and currency options”: it is probably the one stochastic volatility model for
equities which both allows computing European option prices very efficiently
and which fits reasonably well to market data in very different conditions.

In fact, the model has been used successfully (in a sense explained below)
during the boom in the end of the 90s, in the brief recession 2001, in the very low
volatility regime until 2007, and it still performed well during the very volatile
period of the late in 2008.

However, the model also has several questionable properties: critics point out
that its inherent structure as a square-root diffusion does not reflect statistical
properties seen in real market data. For example, typical calibrated parameters
allow the instantaneous volatility of the stock to become zero with a positive
probability. From a practical point of view, the most challenging property of
Heston’s model is the interdependence of its parameters and the resulting in-
ability to give these parameters a real idiosyncratic meaning. One example is
the fact that moving the term structure of volatility will have an impact on
the shape of the implied volatility skew. This means that traders who use this
model will have to have a very a good understanding of the dynamics of the
model and the interplay between its parameters.

Other stochastic volatility models with efficient pricing methods for Eu-
ropean options are: SABR [ref], Schoebel-Zhou [ref] (Exponential Ornstein-
Uhlenberg) and Lewis’ “2/3-model” [ref]. The n-dimensional extension of Hes-
ton’s model is the class of affine models [ref]. Related are Levy’-based models
which can also efficiently be computed [ref]. The most natural model which is
used frequently but which actually does not allow efficient pricing of Europeans
is a log-normal model for instantaneous volatility.



1.1 Model Description

If we assume a prevailing instantaneous interest rate of r = (r;);>0 and a yield
from holding a stock of u = (f¢):>0, then Heston’s model is given as the unique
strong solution Z = (S, v4)i>0 of the following SDE:

d’Ut = /{(9—1),5) dt-’-O'\/’thth
dS; = Si(re — pe) dt + S\/vi dBy (1)

with starting values spot So > 0 and “Short Vol” \/vg > 0. In this equa-
tion, W and B are two standard Brownian motions [ref] with a correlation
of p € (=1,+41). The model is usually specified directly under a risk-neutral
measure.

This correlation together with the “Vol Of Vol” ¢ > 0 can be thought of being
responsible for the skew. This is illustrated in figure 1: Vol Of Vol controls the
volume of the smile and correlation its “tilt”. A negative Correlation produces
the desired downward skew of implied volatility and it is usually calibrated to
a value around —70%.
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Figure 1: Stylized effects of changing Vol Of Vol and Correlation in Heston’s model
on the ly implied volatility. The “Heston” parameters are vo = 15%2, 6 = 20%2,
k=1, p=-70% and o = 35%.

The other parameters control the term structure of the model: in figure 2,
the impact of changing “Short Vol” /vy > 0, “Long Vol” v/6 > 0 and “Reversion



Speed” Kk > 0 on the term structure of ATM implied volatility is illustrated. It
can be seen that Short Vol lives up to its name and controls the level of the
short dates implied volatilities, while Long Vol controls the long end. Reversion
Speed controls the skewness or “decay” of the curve from the short vol level to
the long vol level.
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Figure 2: The effects of changing Short vol, Long vol and Reversion Speed on the
ATM term structure of implied volatilities. Each graph shows the volatility term
structure for 12 years. The reference Heston parameters are v = 15%2, 6 = 20%2,
k=1, p=70% and o = 35%

This inherent “mean-reversion” property of Heston’s stochastic volatility
around a long-term mean v/0 is one of the important properties of the model.
Real market data are often mean-reverting, and moreover, it also makes eco-
nomic sense to assume that volatility is not unbounded in its growth as, for
example, a stock price process is. In historic data, the “natural” level of mean-
reversion is often seen to by itself a mean-reverting process as Fouque at al [10]
have shown. Some extensions of Heston into this direction are discussed below.

1.1.1 Parameter Interdependence

Before we proceed, a note of caution: the above distinction of the parameters by
their effect on term structure and strike structure above was made for illustration
purposes only: in particular k and o are in fact strongly interdependent if the
model is used in the form (1).

This is one of the most serious drawbacks of Heston’s model since it means
that a trader who uses it to risk-manage a position cannot independently control
the risk with the five available parameters, but has to understand very well their



interdependency. For example, to hedge, say, convexity risk in strike direction of
the implied volatility surface, he or she will also have to deal with the skew risk
at the same time since in Heston, there is no one parameter to control either:
convexity is mainly controlled by Vol Of Vol, but the effect of Correlation on
skew depends on the level of Vol Of Vol, too. Moreover, changes to the short
end volatility skew will always affect the long-term skew. A similar strong co-
dependency exists between Vol Of Vol and Reversion Speed; as pointed out in
Bermudez et al.[3], some of the strong interdependence between Vol Of Vol and
Correlation by using the alternative formulation

d’l}t = (9 — Ut) Kkdt + 6’\/1; \/Eth . (2)

In this parametrization, the new Vol Of Vol and Reversion Speed are much less
interdependent which stabilizes results of daily calibration to market data sub-
stantially. Mathematically, this parametrization much more naturally defines s
as the “speed” of the equation.

These complications are a general issue with stochastic volatility models:
since such models attempt to describe an unobservable, rather theoretical quan-
tity (instantaneous variance), they do not produce very intuitive behavior when
looked at through the lens of the observable measure of “implied volatility”.
That said, implied volatility itself or, rather, its interpolations are also mov-
ing on a daily basis. This indicates that natural parameters such as convexity
and skew of implied volatility might be a valuable tool for feeding a stochastic
volatility model, but it is unreasonable to keep them as constant parameters
inside the model.

1.2 Pricing European Options

Heston’s popularity is probably mainly derived from the fact that it is possible
to price European options on the stock price S using a semi closed-form Fourier-
transformation which in turn allows rapid calibration of the model parameters to
market data. “Calibration” here means to infer values for the five unobservable
parameters /v, V0, k,0,p from market data by minimizing the distance be-
tween the models’ European option prices and observed market prices, cf. [ref].

We focus on the call prices. Following Carr/Madan [7], we will price them
via Fourier-inversion.! The call price for a relative strike K at maturity T is
given as

C(T, K) = DF(T)E [ (Sr ~ KFr)* | |

where DF(T) represents the discount factor and where Fr is the forward of
the stock. Since the call price itself is not an L?-function in K, we define a

“dampened call”

e(xk

o(T, k) == WC(T, )

'In his original paper [11], Heston suggested a numerically more expensive approach via
numerical integration which is twice as slow but still much faster than the same computation
for most other models. The approach to price with Fourier-investion is due to Carr and
Madan [7]; the interested reader finds more details on the subhect Lewis’s book [13].



for an o > 0,2 for which its characteristic function v(z; k) := [ e™**c(t, k) dk
is well-defined and given as

pr (k—i(a+1))
(ik+a)(ik+a+1)

Pi(zi k) =

The function ¢;(z) := Elexp{izlog S;/F}}] is the characteristic function of X; :=
log S;/F;. Since Heston belongs to the affine model class, its characteristic
function has the form

—vgAr—mBy )

vi(z) =e
with (cf. [3])

vt abyt + (af — ab) log B1be”
Ay ::w and B;: =& it )log A+b ,
B+ bert Bby

where p = (iz + 22)/2, k== Kk — pizo, v 1= —\/2u02 + &2, a := —2u, o = 24,
b:=—k+~vand B:=kK+1.
We can then price a call on X using

e~ In(K) oo
C(T, K) = DF(T) Pr——— / e =)y (2:In(K)) dz
0

The method also lends itself to Fast-Fourier transform if a range of option prices
for a single maturity is required.

Similarly, various other payoffs can be computed very efficiently with the
Fourier-approach, for example forward started vanilla options, options on inte-
grated short variance and digital options.

Time-Dependent Parameters

Moreover, for most of these products — and most importantly, plain European
options — it is very straight forward to extend the model to time-dependent,
piece-wise constant parameters. This is briefly discussed in [3]. It improves the
fit of the model to the market prices markedly, cf. figure ?? on page 15.

However, it should be noted that by introducing piece-wise constant time-
dependent data, we lose much of a model’s structure: it is turned from a time-
homogeneous model which “takes a view” on the actual evolution of the volatil-
ity via its SDE into a kind of an arbitrage-free interpolation of market data: if
calibrated without additional constraints to ensure smoothness of the param-
eters over time, this is reflected in large discrepancies of the parameter values
for distinct periods. For example, the excellent fit of the time-dependent He-
ston model in figure 5 is achieved with the following parameter values (short
volatility /Co was 15.0%):

2See Carr/Madan [7] for a discussion on the choice of a.



6m‘1y‘3y‘oo

Long vol v/ 20.7% | 23.6% | 36.1% | 46.5%
Reversion Speed & 5.0 3.2 0.4 0.3
Correlation p -55.2% | -70.9% | -80.1% | -69.4%
Vol Of Vol o 78.7% | 81.5% | 35.3% 60.0

The increased number of parameters also makes it more difficult to hedge
in such a model in practise: even though both Heston and the time-dependent
Heston models create complete markets as discussed in section 77, we will al-
ways need to additionally protect our position against moves in the parameters
values of our model. Just as for Vega in Black&Scholes, this is typically done
by computing “parameter greeks” and neutralizing the respective sensitivities.
Clearly, the more parameters are involved, and the less stable these are, this
“parameter hedge” becomes less and less reliable.

Mathematical Drawbacks

The underlying mathematical reason for the relative tractability of Heston’s
model is that v is a squared Bessel process [ref], which is well understood
and reasonably tractable. In fact, a statistical estimation on SPX by Ait-
Sahalia/Kimmel [14] of o € [1/2,2] in the extended model

dvi = K(0 —vy)dt + ovd dW}

has shown that, depending on the observation frequency, a value around 0.7
would probably more adequate. What is more, the square-root volatility terms
means that unless

260 > o2 | (3)

the process v can reach zero with non-zero probability. The crux is that this
conditions is regularly violated if the model is calibrated freely to observed
market data. While a vanishing short variance is not a problem in itself (after all,
a variance of zero simply means absence of trading activity), it makes numerical
approximations more complicated. In a Monte-Carlo simulation, for example,
we have to take the event of v being negative into account. The same problem
appears in a PDE solver: Heston’s PDE becomes degenerate if the short vol
hits zero. A violation of (3) also implies that the distribution of short-variance
at some later time t is very wide, cf. figure 4.

Additionally, if (3) does not hold, then the stock price S may fail to have a
second moment if the correlation is not negative enough in the sense detailed in
proposition 3.1 in Andersen/Piterbarg [1]. Again, this is not a problem from a
purely mathematical point of view, but it makes numerical schemes less efficient.
In particular, Monte-Carlo simulations are performing much worse: while an
Euler-scheme will still converge to the desired value, the speed of convergence
deteriorates. Moreover, we can not safely use control variates anymore if the
payoff is not bounded.



1.3 Pricing Methods

Once we have calibrated the model using the aforementioned semi-closed form
solution for the European options, the question is how to evaluate complex
products. To our disposal are PDEs and Monte-Carlo schemes.

Since the conditional transition density of the entire process is not known,
we have to refrain to solving a discretization of the SDE (1) if we want to
use a Monte-Carlo scheme. To this end, assume that we are given fixing dates
0=ty <---<ty=Tandlet At; :=t;41—t; fori =0,..., N—1. Moreover, we
denote by AW; for i =0,..., N — 1 a sequence of independent normal variables
with variance A;, and by AB; a corresponiding sequence where AB; and AW;
have correlation p.

When using a straight-forward Euler-scheme we will face the problem that
v can become negative. It works well simply to reduce the volatility term of the
variance to the positive part of the variance, i.e. to simulate

Vo = Vi + R(0 —v) A + J\/U;FAWi .
A flaw of this scheme is that it is biased. This is overcome by using the moment-
matching scheme
1 _ ef?HAti

Vtipr = OAt; + (0 — vt,) e+ <Jvt+i 2K

which works well in practise. To compute the stock price, we approximate the

integrated variance over [t;, t;11] as
1— efkaAti
AV = 0A + (v, — ) —— |
K

and set
k—1

1
S, = Fi, exp {Z {\/AZ-VABZ» — QAiV}} .

i=1
Note that this scheme is unbiased in the sense that E[St]| = Fr.
Heston’s PDE
It is straight forward to derive the PDE for the previous model. Let
P,(v,S) := DF{(T)E [ F(Sr) ‘ Sy =S,v =v]
be the price of a derivative with maturity 7" at time ¢. It satisfies
0 = 7P+ 0sPi(ry — p1t)Se + Ou Pis(m — vy)
+ %6§'Spt5tvt + %812,th0211,5 + 8§SPtpvtSt

with boundary condition Pr(S,v) = F(St). To solve this two-factor PDE with
a potentially degenerate diffusion term in 92, P, it is recommended to use a
stabilized ADI scheme such as the one described by Craig and Sneyd [8].



1.4 Risk Management

Provided that we consider not only the stock price itself but also a second liquid
instrument V such as a listed option as hedging instrument, stochastic volatility
models are complete, i.e. in theory every contingent claim P can be replicated
in the sense that there are hedging strategies (A, Vi) such that

dPt — ’I"tPtdt = At (dSt — S’t(rt — ut) dt) + Vt (d‘/t - ’I"t‘/tdt)

In Heston’s model we can write both the price process of the derivative we
want to hedge, and the hedging instrument as a function of current spot level
and short variance, i.e. Py = P(S¢,v¢) and Vi = V4(St,v). Then, the correct
hedging ratios are

= g:i and At = 5‘5Pt - g:i
This is the equivalent of delta-hedging in Black&Scholes [ref]. However, as for
the latter, plain theoretical hedging will not work since the other parameters
in our model, Reversion Speed, Vol Of Vol, Mean Volatility and potentially
Correlation will not remain constant if we calibrate out model on a daily basis.
This is the effect as a change in volatility for Black&Scholes - a change of this
parameter is not anticipated by the model itself and must be taken care of
“outside the model”.

As a result, one way to control this risk is to engage in additional parameter
hedging, i.e. the desk also displays sensitivities with respect to the other model
parameters including, potentially, second-order exposures. Those can then be
monitored on a book level and managed explicitly. The drawback of this method
is that to reduce risk with respect to those parameters, a portfolio of vanilla
options have to be bought whose composition can change quickly if implemented
blindly.3

A second variant is to try to map standard risks of the desk such as implied
volatility convexity, skewness etc into stochastic volatility risk by “recalibra-
tion”. The idea here is that, say, the convexity parameter of the implied volatil-
ity is modified, then Heston’s model is calibrated to this new implied volatility
surface and the option priced off this model. The resulting change in model
price is then considered the sensitivity of the option to convexity in implied
volatility. This approach suffers from the fact that typical “implied vol risks”
are very different than typical movements in the Heston model. For example,
the standard Heston model is homogeneous so it cannot accommodate changes
in short-term skew only easily.

Vi

OsV; .

1.5 Related Models
Bates and Beyond

Due to its numerical efficiency, Heston’s model is the base for many extensions.
The first notable extensions is Bates’ addition of jumps to the diffusion process

3Bermudez et al discuss one approach to find such portfolios [3].



in [2]. Jumps are commonly seen as a necessary feature of any risk management
model, even though the actual handling of the jump risk part is far from clear.
Bate’s approach can be written as follows: let X be given by

d'Ut = Iﬁ:(e—’l}t) dt-'-O'\/U»tth
dX, = X;\/v;dB (5)
and let N,
S, = F, X e2i=1 & Amt (6)

where NN, is a Poisson-process with intensity A [ref] and where (¢;); are the
normal jumps of the returns of S with mean m and volatility v. To make sure
that S;/F} is a martingale, that implies that m = emtsvt .

Since the process X is independent of the jumps, the characteristic function
of the product is imply the product of the characteristic functions. In other
words, Bates’ model can be evaluated using the same approach as above and
is equally efficient, while allowing for a very pronounced short-term skew due
to the jump part.* Figure ?? shows the improvement of time-dependent Bates
over time-dependent Heston.

The model has been further enhanced by Knudsen and Nguyen-Ngoc [12]
who also added exponentially distributed jumps to the variance process.

Multi-Factor Models

Structurally, Heston’s model is member of the class of “affine models” [ref] as
introduced by Duffie, Pan and Singleton [9]. As such, it can easily be extended
by mixing in further independent square-root processes. One obvious approach
presented in [3] is simply to multiply several independent Heston processes. For
the two-factor case, this means to set S; := F; X} X? where both X! and X2
have the form (5). Jumps can be added, but to make the Fourier-integration
work efficiently, the processes X' and X2 must remain independent.

The stochastic variance of the joint stock price is then simply the sum of
the two separate variances, v! and v2, and it is intuitive assume one is a “short-
term”, fast-mean reverting process while the other is slowly mean-reverting.
Such a structure is supported by statistical evidence, cf. Fouque et al [10]. How-
ever, the independence of the two processes makes it very difficult to impose
enough skew into this model since the effective correlation between instanta-
neous variance and stock price weakens. In practise, this model is used only
rarely.

A related model “Double Heston” has been mentioned by Buehler [5] which
is obtained by modelling the mean variance level § in Heston itself as a square-

4In practise, calibrating all parameters (stochastic volatility plus jumps) together is rela-
tively unstable since the two parts play similar roles for the short term options. It is therefore
customary to fix the jump parameters themselves or to calibrate them separately to very
short-term options.



root diffusuion, i.e.

dUt = l‘i(et —Ut) dt+0'\/ath
d9; = c(m—0;)dt+v/0 dW! (7)
dSt = St (T‘t - Mt) dt + St\/EdBt

where W7 is independent from W and B. While this model has a reasonably
tractable characteristic function, it also suffers from the problem that long-term
skew becomes too symmetric, contrary what is observed in the market. Such a
model, however, may have applications when pricing options on variance where
the skew counts less and it is more important to be able some dynamics of the
term structure of variance. Refer to Buehler [5] for an extensive discussion on
this.

Fitted Heston

A particular class of derivatives which gain reasonable popularity in recent years
are “Options on Variance”, i.e. structures whose terminal payoff depends on
the realized variance of the returns of the stock over a set of business days
O=tg<---<t,=T,

n 2
RV(T) ==Y <log S*j“ ) :

i=1

The most standard such product is a “variance swap” [ref], which essentially
simply pays the actual realized annualized variance over the period in exchange
to a previously agreed fair strike. This strike is usually quoted in volatility
terms, ie a variance swap with maturity 7' and strike X(7) pays

252
“ZRV(T) — 23(T) .
n

From this product, a market on options on realized variance has evolved nat-
urally: this include capped variance swaps (mainly traded on single stocks),
outright straddles on realized variance swaps and also VIX futures and options
[ref]. While there are several discussions around how to best approach the risk
management of such products, a particularly useful of Heston’s model is the
“Fitted Heston” approach introduced by Buehler [4].

The main idea here is that to price an option on realized variance in a given
model, it is crucial to price correctly price a variance swap itself, ie to make sure
that n

E[RV(T)] = =—=X*(T) . 8

[RV(T)] = 5-23(T) (s)
The idea of “fitting to the market”, say, Heston’s model (2) is now simply to force
the model to satisfy this equation. First, assume that we have the term structure

10



of the market’s expected realized variance, M(T) = n¥?(T)/252 = ¥*(T)/T,
and define m(t) := dr|r=+M(T). Take the original short variance of the model,

d’l}t = (0 - Ut) kdt + O'\/E\/Eth

and define the new “fitted” process as

and the stock price as
dSt = St(T‘t — /Jt) dt =+ W dBt

which now reprices all variance swaps automatically in the sense (8). As pointed
out in [5], this model is also very attractive from a risk-management point of view
if the input M is computed on-the-fly within the risk management system: in
this case, the risk embedded is automatically reflected in the standard implied
volatility risk, and the underlying stochastic volatility model is used purely
to control skew, and convexity around the variance swap backbone.® Further
practical considerations and the impact of jumps are discussed by Buehler in [6].
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Figure 3: Heston without and with time-dependent parameters fitted to STOXX50E
for maturities from 1m to 5y. The introduction of time-dependency clearly improves
the fit.
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Probability density of Heston's short vol for a vol of vol of 20%
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Figure 4: This graphs shows the density of v; for one, three and six month for the
case where condition (3) is satisfied (left side) or not (right side). Apart from Vol of

Vol, the parameters where vo = 15%2, 6 = 20%? and k = 1.
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.STOXXS0E Heston TD Calibration 10/01/2006
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STOXXS0E Bates TD Calibration 10/01/2006

g %
@ o

100%
105%
110%
115%

Strike/Spot

120%
125%

Figure 5: Heston and Bates with time-dependent parameters fitted to STOXX50E
for maturities from 1m to 5y.
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